
A STRONG LOWEE? BOUi'JD ON FREE DISTANCE 

FOR PFKCODIC COKVOLUTIONAL CODES 

Daniel J. Costello,  Jr . 
Department of E l e c t r i c a l  Engineering 

I l l i n o i s  I n s t i t u t e  of Technology 
Chicago, 111. 60616 

t// 
This is  t h e  manuscript of a 'long' paper t o  be presented z t  

the  1970 IEEE I n t e r n a t i o n a l  Synposim on Informati-on Theory, 

Noordwijk, %?le Netherlands, June 15-19, 1970. 
no Proceedings or o the r  publ ica t ion  of the papers s i~brd%te~I .  

t o  t h i s  Symposium.) 

(There vU.1 bi! 

t e d  by the  National Aeronautics Yd Space 
This work w a s  

A h i n i s t r  a t  i o  

Notre Dame i n  l ia i sor ,  with t h e  F l i g h t  Data Sys t em Branch of 
the  Goddard Space Flight Center during the  per iod during xhich 

the author was a- resczsch  a s s i s t a n t  under t h i s  grant .  

Grant NGL 1.5-0014-026) a t  the' Universi ty  o f  

(THRU) 

(CATEGORY) 



ABSTRACT 

A s t rong  lower bound on t h e  f r e e  dis tance of t h e  c l a s s  of non-systematic 

per iodic  time-varying convolutional codes i s  derived. 

combined with other  known bounds t o  show t h a t  more f r e e  dis tance i s  

avai lable  with non-systematic codes than with systematic codes. 

is known t h a t  free dis tance is  a nlore important parameter than t h e  

This bound is then 

Si.nce it 

conventional minimum dis tance  f o r  codes used with sequent ia l  decoding, it 

is  argued t h a t  fewer decoding e r r o r s  w i l l  be rhade with non-syst eatic codes 

than with systematic codes of the  same rate  and cons t ra in t  l ength ,  
c 



"A Strong Lower Bound on Free Distance for Periodic  

Convolutional Codes" 

I. Introduction 

It has recent ly  been discovered t h a t  free dis tance is a more 

important parameter for convolutional codes u e d  with sequent ia l  decoding 

than t h e  conventional minimum dis tance 

free d is tance  a t t a inab le  with binary convolutional codes have been reported.  

McEliece and Rumsey * 

e Two important bounds on t h e  

have shown a Plotkin-type upper bound on free 

dis tance f o r  rate R = 1 / N  systematic convolutional codes. 

t h i s  bound states t h a t  

Asymptotically 

d~~~ 1-R l i m  ----=- < - 
A I .  2 ,  

m - t w  A 

is  the  free dis tance,  m is the  memory of  t he  code, and n = N(mt-1) FREE A where d 

is the  cons t ra in t  length of the  code. 

bound on free dis tance f o r  non-systematic convolutional codes. 

Neumann has obtained a lower 

Asymptotically 

t h i s  bound states t h a t  

2H-' (I-R) f w  R '= 0.374 

for  R 2 0.374 
(2)  2R- 1 2R (1-2 

H(1-22R-') + 2R-1 

L d~~~ 
n - l i m  

m - t m  A 

where H(x) = -x log2 x - (1-x) log2 (1-x) i s  the  binary entropy function. 

Note t h a t  f o r  t h e  range of rates above R = 0.374, t h i s  bound is t w i c e  t h e  

usual. G i l b e r t  lower bound 

usual  Gilbert lower bound 

It is  t h e  parpose of 

for t he  more general  

convolutional codes. 

shown t h a t  

on minimum dis tance.  It is  a l s o  known t h a t  t h e  

2 holds for t h e  f r e e  dis tance of systematic codes . 
t h i s  paper t o  prove a s t ronger  lower bound than ( 3 )  

c l a s s  of non-systematic per iodic  time-varying 

In  p a r t i c u l a r ,  f o r  t h i s  class of codes it w i l l  be 



R( 1-2R’1) 
R- 1 - - d~~~ l i m  - > n A .H(1-2 ) i- R-1 m + -  

< 
Note t h a t  t h i s  bound is  of t h e  same form as the  bound i n  ( 2 )  for R = 0.37 

ex-ept t h a t  2R is  replaced by R. 

i n  (1) holds for t h e  class of systematic per iodic  time-varying codes 

It can a l s o  be shown t h a t  t h e  upper bound 

rs . 
The bounds of equations ( l ) ,  (21 ,  and (3 )  are p lo t t ed  along with t h e  

usual Gilber t  lower bound i n  Figure 1. Note t h a t  for t he  c l a s s  of per iodic  

codes the  lower bound on non-systematic codes is  everywhere g r e a t e r  than 

the  upper bound on systematic codes. 

from non-systematic per iodic  codes than  from systematic per iodic  codes. 

The same conclusion can be drawn for t h e  class of non-time-varying codes 

~ Q P  t he  r a n m e  “b- 92 rates aver wl;izh the l ~ x e r  boiiid on iioii-systeniatic codes 

exceeds t h e  upper bound on systematic codes, i . e . ,  f o r  R = 0.374. 

Hence more free dis tance is ava i l sb l e  

< 

These r e s u l t s  have important implications when codes are being se lec ted  

f o r  use with sequent ia l  rlecodicg. 

various codes of a given cons t ra in t  length used with sequent ia l  decoding, 

It has recent ly  fjeea sho& t h a t  fo r  

1 Y 5  fewer decoding e r r o r s  are made by the codes with l a r g e r  free d is tances  

Therefore non-systematic codes w i l l  i n  general  y i e l d  b e t t e r  sequent ia l  decoding 

performance than systematic codes. Bucher 

c lusion through an ana lys i s  of t h e  sequent ia l  decoding algorithm. 

has also ar r ived  a t  t h i s  con- 

11. Prel iminaries .  

The encoding equations for a rate R = k/N binary time-varying con- 

volut ional  code can be wr i t t en  as 

y = x g ,  (4) 

where 



is  t h e  sequence of binary information d i g i t s ,  

is t h e  sequence of binary t ransmit ted d i g i t s  o r  codeword, 2nd 

(0 )  g1(O) g2(0) ... %(O) 0 - 0 n.e 

G (1) G+(1) - . e  s - l ( l )  g m ( l )  - 0 * a .  4 3  

0 G (2)  ... G (2)  Em-1(2) s(2) ... -0 -m- 2 - 

*. . 

is t h e  semi- inf ini te  generator  matrix i n  which each 

G =  - (7) 

< <  < is a k x N matrix of binary d i g i t s ,  0 = h = m,  0 = u <me , 

... x. (k) ] is  t h e  block of k input  d i g i t s  i n t o  t h e  x. = [  xi (1)  (2) 
-1 i 1 

... yi is  t h e  block of N (1)  (2)  
Y i  encoder a t  t i m e  u n i t  i and y. = [ yi 

1 

output d i g i t s  from t h e  encoder a t  time u n i t  i. m is ca l l ed  t h e  nemory of 

the  code and n = N(mtl), t h e  maximum number) of  t ransmit ted d i g i t s  which A 
can be a f f ec t ed  by a s i n g l e  non-zero block of information d i g i t s ,  is ca l l ed  

t h e  cons t ra in t  length.  

If 

then t h e  time-varying code is per iodic  with per iod T, ;.e., t h e  generator  

matrix repea ts  i t se l f  every kT rows. If T = 1, every s e t  of k rows i n  G . -  

- 3 -  



is  t h e  same (except f o r  s h i f t i n g  N columns t o  t h e  r i g h t ) ,  and t h e  code is 

non- t ime-varying or f ;xed 

t h  L e t  x ( j )  = [ x ( j )  x ( j )  x ('I.. . I  be t h e  j- information subsequence, 0 1 2 - 

< 
subsequence, 1 = j 2 N .  

exact reproductions of  t h e  k information subsequences, t h e  code is s a i d  

t o  be i n  systematic  form. 

on t h e  generator  matrix of  a per iodic  code: 

Then if  t h e  first k t ransmi t ted  subsequences are 

Clear ly  t h i s  places  t h e  following r e s t r i c t i o n s  

G (u)  = [ Ik : -0 

where Ik is  t h e  k x 

binary d i g i t s ,  and 

< 
-Q Q (u)], 0 = u < T, 

k i d e n t i t y  matrix and Q (u) i s  a k x (N-k) matrix of 4 

G (u) = I o k  : % (u)] , 0 = < u T, 1 < = h 2 m ,  -h 

where 0 is t h e  k x k 

binary d i g i t s .  

(11) 

k a l l -zero  matrix and Q (u)  is  a k x (N-k) matrix of  4 s  

The f r e e  dis tance of  a convolutional code i s  defined as t h e  minimdm 

Hamming d is tance  between any two d i s t i n c t  codewords, i .e . ,  

where dfi ( *  , 0 )  denotes t h e  Hamming d is tance  between t h e  two arguments. 

.Because t h e  encoding process i s  l i n e a r ,  (12 )  can be s impl i f ied  t o  

= mir! w ( x  g, 
dFREE xf0 H -  - -  

i s  seen F-WE where W ( - 1  denotes the  Hamming weight of  the  argument. 

t o  be t h e  minimum Hamming weight codeword. 

Eence d H 

For a l l  codes t h a t  do not  exh ib i t  ca t a s t r aph ie  e r rop  propagation, 

Massey has shown t h a t  i n f i n i t e l y  long information sequences must 

produce i n f i n i t e  

codeword must be 

f a c t  it is known 

weight codewords. 

produced by a f i n i t e  length jnformation sequence. I n  

t h a t  t h i s  length cannot be nore than t h e  order  o f  m 

Therefore t h e  minimum f r e e  weight 

2 for 

- 4 -  



systematic R = 1 / N  f ixed codes 1’8 . 
hold f o r  almost a l l  non-systematic per iodic  codes 

bound on t h e  length ( i n  blocks of k d i g i t s  each) of information sequence 

needed t o  produce t h e  inininurn free weight c o d e ~ ~ r d .  

consider only non-systematic per iodic  codes w j  t h  

period T = L t m such t h a t  T is  only an a lgebra ic  function of m,  i .e . ,  T 

grows less than exponentially with m. This i s  equivalent t o  expurgating 

from the  ensemble of codes t h a t  vanishingly small f r a c t i o n  of codes f o r  

A similar bound can be shown t o  

4 . L e t  L be t h e  

A ‘ .  

Henceforth WE w i l l  

> 

which L may grow exponentially with m. 

111. Three Lemmas. 

Lemma 1. 

a l l -zero  blocks can produce t h e  minimum free Fjeight codeword. 

Proof. 

No information sequence with a s t r i n g  of m or more consecutive 

Following any information sequence with a s t r i n g  of m or more con- 

secut ive a l l -zero  blocks and then addi t iona l  non-zero blocks can only add 

t o  t h e  weight of t he  codeword. 

produce t h e  minimum f r e e  weight codeword. Q.E.D. 

Hence such an information sequence cannot 

L e t , S  be t h e  set of a l l  information sequences of length h ( i n  blocks h 

... = x -u-1 = %th= of k d i g i t s  each) such t h a t  x # 0 ,  %th-l ; r g , x + = x  -1 = - - u -  
< ... = 0 ,  for some u,  0 = u e T ,  and Khich contain no s t r i n g  of m - - - X -utht l  

or more consecutive a l l -zero  blocks inc lus ive  between block u and block 

uth-1. 

d or less produced by an information sequence from t h e  set S 

Now l e t  F(h,d) be t h e  f r a c t i o n  of  codes with a codeword of weight 

h. 

d 
*T(2k-1) c Lemma 2. 

e j =O F(1,d) = 
2N(m+l) 

1’ Proof. For a p a r t i c u l a r  information sequence of length 1 beionging t o  S 

we must specify the  number of d i f f e r e n t  ways of choosing a low weight row 

4-  



d 

j =O 
of G. Clearly,  t h e r e  are C -(N(mi-l) ) ways of  choosing a low weight 

.N(mtl) - t up le .  Once one row of - G has been spec i f i ed  as having low 

weight, t h e  [ k-1 -k (T-l)k]  N(mi-1) = TkN(m+P) - N(m+l) d i g i t s  i n  t h e  

remaining d i s t i n c t  rows can be chosen a r b i t r a r i l y .  

information sequence from S, can produce a low weight codeword i n  a t  most 

j - 

Hence a p a r t i c u l a r  

A 

k d 
(N(Ti-l)) codes. Since t h e r e  are T ( 2  -1) ways of TkN(mt1) - N(mf1) 2 

j = O  J 

choosing such an information sequence and s ince  the re  are approximately 

2 TkN(mtl) t o t a l  codes i n  t h e  expurgated ensemble, 

Lemma 3 .  

(N(mth)) 
j 

T (2k-1)2 C 
j =O for h = 2, 3 ,  ...¶ L. (N-k)h 22k + Nm F(h,di 5 

2 

J j =O 
F(hadi  (N-k)h 22k + Nm for h = 2, 3 ,  ...¶ L. 

2 

h’ Proof. 

t h e  t ransmi t ted  sequence contains  m+h blocks. 

low weTght t ransmi t ted  sequences. 

For a p a r t i c u l a r  information sequence of length h belonging t o  S 

(N(m+h)) 
j 

Hence the re  are 
j = O  

If t h e  information sequence being 

considered i s  one for which u = 0 ,  then t h e  encoding equations can be 

wr i t t en  as follows: 

yo=- i f0-0  G ( 0 )  

yl = zl % (1)  t x G (1)  

y2 =. x G -2 -0 

-0 -1 

(2)  + zl El (2)  + 3 g2 (2)  

- -. G (mth-1). &n+h--l %-I -m 



Since no information sequences with a s t r i n g  o f  m or more consecutive 

a l l -zero  blocks belong t o  S and s ince  T = mth, equations (14) are a 

l i n e a r l y  independent set .  

sequence from S 

there  are 2 TkN(m‘l) - N(m+-h) so lu t ions  t o  equations (14). 

k(h-2) (2‘-112 d i f f e ren t  information sequences i n  S are at  most T2 

s ince  the re  are approximately 2 TkN(mtl) t o t a l  codes i n  t h e  expurgated 

ensemble, 1 

> 
h’ 
Therefore, given a p m t i c u l a r  information 

with u = 0 and a p a r t i c u l a r  low weight t ransmi t ted  sequence, h 

Since t h e r e  

and h’ 

I V .  Derivation o f  t h e  Bound. 

Theorem 1. There e x i s t s  a t  l e a s t  one non-systematic per iodic  convolutional 

code such tha t  

Proof. 

g rea t e r  than L can produce t h e  minimum free weight codeword, if 

tnen the re  e x i s t s  a t  least  one code with d 

From l e m m a  1 and t h e  fact t h a t  no information sequence of length 
L 
C F(h,d) < 1, 

h= 1 

> d. L e t  Fmax = max F(h,D). 
< <  F E E  

l = h = L  

Then if LFmax < 1, FREE ’ t he re  e x i s t s  a t  least one code with d 

d 
w i l l  be obtained. Since c (N(F+h)) 2 

On Fmax j=O 3 
F i r s t .  an upper bound max 

1, an upper bound on F can be obtained by maximizing d 
2 N(mh) H ( m )  max 

N(m+h) H(N(m+h) ) - h(N-k) . L e t  hmax be t h e  value of h which maximizes 

t h i s  expression. By s e t t i n g  i t s  der iva t ive  with respec t  t o  h ‘equa l  t o  zero 

- m. d ‘  and solving for h,  it can be shown t h a t  h = 
N ( 1- 2R- l) max 



Therefore i f  LFmax < 1, then LFmax < 1 and t h e r e  e x i s t s  a t  least one 

code with dFEE > d. 

LFmax 

Al te rna t ive ly ,  i f  d is t h e  least in t ege r  such t h a t  

> - 1 d. FREE = 1, then the re  e x i s t s  a t  least one code with d 

Hence w e  must f i n d  t h e  least in t ege r  d such t h a t  log2 LT + 2 log2 ( 2  -1) 
k 

+ H(1-2'-') - h (N-k) 2 2k + Nm. Ijividing by m and dropping R- 1 max 1- 2 

a l l  terms which approach zero as m approaches . inf ini ty ,  w e  obtain 

> + (N-k) = N. This implies t h a t  d 1 - R  
m ) I -  - (  m R- 1 1- 2 

d H(1-2R-1 
- ( R - l  1- 2 

. Therefore the re  e x i s t s  a t  least one code such t h a t  c :  K(1-2R-1) 
m H(1-2R-1) + R-1 

. Q.E.D. l i m  dFREE 2 - R(1-2R-1) 
R- 1 A H(1-2 ) + R-1 n 

mtm 

This bound is  i n t e r e s t i n g  in i t se l f  i n  that 2-t is t h e  s t ronges t  l o w m  

bound known on any class of convolutional codes. This i s  due t o  t h e  Tact 

which i s  always a t  least as g rea t  as t h e  FREE ' t h a t  w e  are bounding d 

conventional minimum dis tance  

t o  include non-systematic per iodic  codes. 

, and w e  are expanding t h e  class of codes 

T a b l e  1 shows t h e  r a t i o  of t h e  

bound i n  theorem 1 t o  t h e  usual  Gi lber t  lower bound as a funct ion o f  r a t e .  

For instance a t  R = %, t h e  bound of theorem 1 is approximately 3% times as 

s t rong as t h e  Gilbert bound. 

are almost t h e  same s ince  only s l i g h t  gains  i n  d 

Note t h a t  f o r  very low r a t e s ,  t h e  two bounds 

can be expected from FREE 

non-systematic codes over systematic codes. 

non-systematic codes o f f e r  great improvements i n  d 

codes and t h e  r a t i o  of t h e  bounds i s  q u i t e  la rge .  

However a t  very high r a t e s ,  

over systematic 
FREE 

.. - 8 -  



V. Conclusions. 

The objec t ive  o f  t h i s  paper w a s  t o  demonstrate t h a t  more free dis tance 

is ava i l ab le  from non-systematic codes than from systematic  codes. 

bound o f  theorem 1 along with equation (1) shows t h a t  this is  t r u e  for 

peri:dic codes of  a l l  rates. Equations (1) and ( 2 )  i nd ica t e  t h a t  t h i s  

The 

is t r u e  f o r  f ixed codes with R 5 0.374. 

for which t h e  least improvement would be expected, t i g h t e r  bounding 

Since t h i s  is  t h e  range of rates 

arguments should produce t h e  same r e s u l t  for f ixed  cocles o f  a l l  rates. 

Since free d is tance  i s  c lose ly  r e l a t ed  t o  sequen t i a l  decoding probabi l i ty  

o f  e r r o r ,  these  r e s u l t s  ind ica te  t h e  d e s i r a b i l i t y  of using non-systematic 

codes with sequent ia l  decoding. 
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TABLE 1 

RATE 

0 

.'O 5 

. I O  

.15 

.20 

.25 

.30 

.35 

40 

.45 

.50 

e 55 

.60 

.65 

.7c 

75 

.80 

.85 

.90 

.95 

1 

A ' / A  

1 

1.33 

1.53 

1.71 

1.90 

2.12 

2.34 

2.58 

2.86 

3.20 

3.57 

4.03 

4.62 

5.30 

6.25 

7.60 

9.40 

12.37 

18.15 

32.85 

1 

is t h e  bound of theorem 1. A '  = R(1-2R-1) 

H(1-2R-1) f R-1 

A = H-l (l-R) is the usual. G i lbe r t  lower bound, 
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